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INVARIANT VARIATIONAL PROBLEMS
WITH BOUNDARY CONSTRAINTS

We construct equivariant version of Ljusternik — Schnirelman theory for the variational problems with boundary
constraints. Our results can be proved in undeformation way, and no kind of constraint regularity is required.

1. Introduction.

There are many problems concerning the critical points of G-invariant functional f(u) =
J a(z,u. Vu) dz with G-invariant operator constraint F (u‘ c’m) = (0 which is defined on the

)
boundary function values only. Here G is a compact subgroup of automorphisms group
Aut (E) with unique fixed point — zero 0 € E. The space E is some closed subspace in
a suitable Sobolev space of vector functions W) () > u = {u',...,u™}, Q is a bounded

domain in RV, gradient Vu = {Vu!, ..., Vu™}.

We shall indicate two examples of such problems. The first is some nonlinear analog
of Steklov problem: scalar functions u € W3,(Q) = W3(Q), f(u) = [|Vu|?’dz, F(u) =
Q

J b(s,yu) dsE — R, 7 is a boundary trace operator. In this case (under natural assumptions
a0
and if we will have carried out the change of f(u) for f(u) + F(u)) all standard conditions

of Ljusternik —Schnirelman theory are fulfilled. The critical points are the solutions of a
problem

(a) du=0, (b) o =

ol 2 Aby(s,u), (c) [b(s,’yu) ds =0, (1.1}
a9
(see details in 1], § V.1).

The second example is a domain mapping u = {u',...,u™}Q — Q,. Here the functional
f(u) and the space E would be so chosen as to ensure the mapping entrance to prescribed
class. The constraint F'(yu) = 0 (here 7 is a vector boundary trace operator) would be
guarantee that u‘ a0 € 9. If w is a mapping with bounded distortion, then last condition
implies u|., € 2, ([2], §6.1).

At the same time, one is interested in investigation of not only critical set but of the
more extensive set

B={ueFE: Lu=0, F(u) =0}, (1.2)

where Lu = I* f'(u) and I W, < Wy, is an embedding. In a regular case, when we
define B, we do not consider specific boundary properties of solutions which are contained
in boundary components of Euler - Lagrange equations (like (1.1.b)).

The proposed approach make possible to prove the existence in B the set of functions
having totality or basis property. In addition in the first example there arise, instead of
(1.1.b), some relations which lead to nonlinear analog of a basis for triangular operator
representation. (The first example will be considered in details, the second one will not be
considered since it require individual work.)

Our approach exploits the functional definition of G-genus (cf. [1], [3]) and does not
exploit any deformation tools; it is closest to linear methods. Therefore no kind of constraint
regularity 4], or quasiregularity [5], is required.
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Invariant variational problems with boundary constraints

2. General definitions and propositions.

2.1. G-genus of sets. Let E be closed linear space, — W"; CcEC H"I} ;1 < p=ge.
Let G' be compact topological group with (left) representation TG — Aut (E), and also the
map © G x E > (g,u) = T(g)u € E be jointly continuous in the variables (g,u). (In the
sequel we shall not distinguish ¢ and T'g, and the notation “¢” will being used in both cases.)
Suppose zero is the unique fixed point for G-action in FE.

Let i be normed Haar measure in G and H be the space of all functionals h(u), u € F
with the following properties: (a) to be continuous; (b) to be bounded in bounded sets; (c)
for all w € E, h € H the means mh(gu) = [ h(gu) du(g) = 0.

é

DEFINITION 1. G-genus of the set M C E is such an integer Gr M that
1))GrM =0 M=9;

2) Gr M = k <= there are k functionals h; € H (ample set of functionals) such that
k

h2(u) > 0 in M, and there are not k — 1 functionals with the same inequality;
=1

3) Gr M = oo, iff there is not a finite ample set for M.

G-genus properties are analogous to Krasnosel’skil genus ones [6]. In certain situations
it is helpfully to have a similar definition for any subset Q C H, i.e. to use only h; € Q. It
is involved in notation QGr M, and in this case the genus was studied in [1].

2.2. Lower bounds for cardinality of B. Let us list the required suppositions.
(i) Functional f is bounded below and coercive, i.e. f(u) — +oo if ||u|| = oc.

(ii) Functional f is sequentially weakly lower semicontinuous, i.e. u; — ug = f(uy) <
lim f (U@)-

(iii) f is Gateaux differentiable and (f'(u),u) > 0 if u # 0.

(iv) F E — E,, where E; is Banach space. The set {F = 0} is sequentially weakly closed
and does not contain zero.

(v) (Vu € E)(Vv €> W) (F(u) =0) = (F(u+v) =0).

(Further we shall assume, for a simplicity, that  is a smooth bounded domain.)

THEOREM 1. There ezist at least k = Gr {F = 0} elements e; € B such that (1) (f'(e:), e;) =
0, (2) F(e) < fles), i i <

Proof. The existence of minimum e; = arg Fx(ni)l_lo f(u) can be proved in a usual method
[7],n° 1.10 that implies the conclusion of a Theorem for k = 1. Next, suppose k > 1.

For alll € E*, u € F the function (I, gu) on g € G is continuous and m; = m{l, gu) define
a bounded linear functional on [, if u is fixed. Thus, we defined some element v € E** = F
which will be denoted as m(gu). Since (Vg; € G) (I, gym(gu)) = (g;l, m(gu)) = m(g;l, gu) =
m{l, g1gu) = m(l, gu) = (I, m(gu)), it follows that m(gu) is a fixed point, i.e. zero. Hence
functionals (l,u) € H.
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Let hy(u) = (f'(e1),u) and M, = {F = 0} N {hy = 0}. Since k > 1, the set M is
not empty, and its sequential weak completeness is obvious. Denote by e, the arg 1161}&1 flu).
uwe

It is clear that ey # e;: hi(es) = 0 but hy(e;) > 0 by (iii), (iv). Due to condition (v) and
the property Yo €— W(Q) (hi(u) = 0) = (hy(u + v) = 0), we have (for the same v)
(f'(ea),v) =0, 1.e. e; € B.

If & > 2 then we may, analogously, to consider My = {F = 0} N {h; = 0} N {hy, = 0},
where hy(u) = (f'(e2),u), and on M, it can be obtained e3 = arg min f(u), etc. The number
of the elements e; is at least k, semiorthogonality follows from the conditions hy(e;) = 0,

ha(ez) = 0,..., the monotonicity of the values f(e;) follows from the insertions M; D M, D
. &

REMARK 1. Formally G-invariance of f,F is not used, but in fact G-invariance of F is
required for Gr{F = 0} calculations. As for invariance of f, it is not required here, in
contrast to Ljusternik — Schnirelman theory, as G- equivariant deformations are not required.
However, if we suppose that

(vi) (Vu € E,g € G) f(gu) = f(u), F(gu) = F(u),

then Theorem 1 can be sharpened. For an easy example, if G = {1, —1}, then there ezxist at
least k pairs of elements (e;, —e;) in B. For general groups the similar sharpening will be
obtained in next section.

2.3. The case k = oo. Totality of the family {f'(e;)}. It is required here to strengthen
conditions on f, and we bring new conditions not in most general but in easily verified forms.
Further we shall assume that all d;(¢) are continuous functions, d;(t) > 0 if t # 0, d;(0) = 0.
The additional conditions on each d;(t), if they will be needed, will be specified.

So new conditions are the followings.

(vii) f = fo+ f1, fi € C', operator f] is uniformly monotone, i.e. (fj(u) — fo(v),u —v) >
di(||u — v||); functional f; is strongly continuous, i.e. u; = ug = fi(u;) = fi(uo).

(viii) [(fi(u),u)] <  do(fo(u)) where do(t) is supposed monotone increasing;
f3(0) = 0.

(ix) fo(u) > ds(||ul|), d3(t) = +o0 at t — oc.
(%) [f1(w)] < da(fo(u)) fo(u) where lim dy(t) < 1.
xi) Gr{F =0}=us0

THEOREM 2. Let the conditions (iv,v,vii-xi) are fulfilled. Then: (1) the family {e;} from
Theorem 1 is infinite; (2) f(e;) — oo at i — oo, (3) the family {f'(e;)} is total on {F = 0},
i.e. for all u € {F = 0} there exists e; such that (f'(e;), u) # 0.

If (vi) is fulfilled, then we can claim: (4) there erist infinite number of G-orbits in the
set B.

Proof. Infinity of {e;} follows from (xi) and can be proved similarly Theorem 1. It
follows from (vi) that the values of f on Ge; are fixed, and if the second statement is proved,
the number of different orbits would be infinite. Thus we need to prove the statements 2 and
3, but before its proving next lemma should be proved.
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LEMMA 1. Let {u,} be such a sequence that u, — ug and fo(u,) — foluo) . Then
Up — Up.

This lemma is analogous to well-known theorem: in uniformly convex Banach spaces if
Uy — up and ||uy|| — ||ug|| then u,, — ug. In [8] this statement is considerably extended, but
even the most general its formulation have not lemma 1 as a consequence: although global
properties of f; are analogous to certain function (|| - ||), its local properties have not such
similarities.

Proof of the Lemma. The conclusion of the lemma is obvious when a = 0, therefore
suppose a # 0.

L. If u, — ug, im{f}(u,). u, — ug) < 0, then u, — u,. it follows from (vii).

Up + U
IL 1t = o, fotn) = ) o (52
suitable 7, € (0,1) we have

0 = lim [fo (—”“;”‘0 3 “*E“—;“D) — fo (u—“;“")] = lim <f’(“—";r“°+
T Un —uo) un—ug> = lim 1 <fr(un+uo 4+ T un—tao) un+uo+
nT2 v 2 - T+7, 2 L T2

Up —U F
Tn_§2_Q - Uo .

) — folug), then u, — ug. Indeed, for a

Taking account of I, we obtain that wu, — u,.

III. For all u € {fo = a} next inequality (f§(uop),u) < 8 %/ (fo(ug), ug) is fulfilled.

Tideed, 16E e o m g, oy DI
a1 < a. For ¢(t) = fo((1 — t)ug + tuy) it will be ¢(0) = a, (t) < a(l —t) + oyt =
a — t(a — ay), i.e. the differentiable function (t) is linearly decreasing near zero, hence
0> ¢'(0) = {fo(uo), u1 — uo)-

IV. We will prove that, for all &y € (0,a) and w € {f, = a;}, it will be true that
(fo(ug), w) < 8—ds(a— ay). Here function ds(t) is increasing for ¢ > 0, in addition to above

conditions.
Since (fj(u),u) > 0 for u # 0, (fo(tw) = a) = (¢ > 1). Write out the lower bound for
t

this . (a—al = foltw)= fo(w) = [ {fo(ow). ) ds < j<fa(sw), swyds < fdz(fo(sw)) ds <

. Since fy is strictly convex, we have fy(u;) =

w a—a;
da(a)(t—1) | = (t >1+ e )
From IIT {fj(uo), tw) < 3, i.e.
5

(o) 0) € Tt
28, - PN T
o 1+ (a0 —ay)/da(a)

The function ds(t) = % have prescribed form.
V. We shall complete the proof of lemma. Suppose u,, — ug, fo(u,) = fo(ug) = a > 0.

un,- + UD

5 < a1 < a (to avoid the contradiction

If u,, - ug then, for some subsequence, f, (
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Uy, + U
2
hand $((f§(uo), un,) + (f§(uo), uo)) — (fo(uo),uo) = B. The contradiction prove the lemma.

O

with II). Together with IV it implies <f6(u0)? < B —ds(a — a;). On the other

Let us continue the proof of the Theorem. Let f(e;) < ¢ < oo, then {e;} are bounded
and let e;; — v. Since (from (vii)) f is weakly lower semicontinuous, f(v) < lim f(e;;). On
the other hand v, as a weak limit of {e;, }, satisfies all constraints from Theorem 1, i.e. v €
My, My, .. .. Since e;; are the minimums in A -problems, f(v) > f(e;;). So f(e;;) = f(v),
i.e. foley;) = fo(v) and (lemma 1) e;; — v.

However, (iv) = v # 0 = (f'(v),v) > da(|]|v]) > 0, contrary to the
M;,-conditions: (f’(e;;),v) = 0. The second conclusion is proved.

If there is uy € {F = 0} such that (Vn) (f'(e,),uo) = 0, then uy satisfies all the M,-
conditions, i.e. (Vn) f(ug) > f(e,). It is impossible, and we proved the third conclusion.
O

REMARK 2. As it said after G-genus definition, we will have to reduce the class H to some
Q C H, in certain cases. It is due to the (possible) fact: HGr M may be small but QGr M
large. If (f'(e;),u) € @ then proofs above remain valid, otherwise we will change this form
together with semiorthogonality relations.

2.4. Hilbert E, basis property. In this section
(xii) B = W, (9);
(xiii) || - || is Hilbert norm in E which is equivalent to standard one, f(u) = 1||u||%.

Some notations Eyq is the boundary traces space with the natural norm, generated by
embedding. The space Ey = Ker~, it is supposed an independed space and I £y, — E is an
embedding. The operator J E* — FE' is dual, i.e. Jf' E — F is identity mapping. The space
(IEy) . is orthogonal complement to IEy in E and (I Ep)* is an annihilator of IEy in E*. (In
general, lower L is orthogonal complement in an original space but upper is an annihilator
in a dual one.)

Clearly, (IEy), = Ker L and ~ have a bounded right inverse v, ! Esq — E.

Suppose, in addition, that
(xiv) F'(u) = ®(yu) where the operator ® Eyq — E is strongly continuous, ®(0) = 0;

(xv) v{FF = 0} is an absorbing set in FEsy in the following meaning
(VO # u € Eaq) (FM(u)) ®(A(u)u) = 0; or (it is equivalent) the set {F = 0} is an
absorbing one in Ker L.

(We shall use abstract notations E, Ej, etc, because, in spite of its concrete contents,
the method of the proof is abstract, and the following theorem is applicable in other concrete
situations.)

THEOREM 3. Let the conditions (xi—xv) are fulfilled. Then:

s {“?”} is Hilbert basis in (I Ey), = Ker L;
i
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{ ”JJ:}( ))“ } is Hilbert basis in (I1Eq)*;

. {n{”e_‘”} 1s Hilbert basis in Eyq;
€

. {('}'*)‘1 ||Jf(( 3))” } is Hilbert basis in E}q.

Proof. 1) Since the conditions of the Theorem 2 (which ensure the totality of {f'(e;)}
in {F = 0}) are fulfilled, the family {e;} is total in (I Ey),. Indeed, there exists, otherwise,
such v € (IEg) 1, v # 0 that (Vi) (v,e;) = 0, i.e. v is orthogonal to the linear span L{e;}.
Hence v € (L{f"(e;)})*. However some A(v)v € {F = 0} and the family {f'(e;)} is total in
{F =0}

Under given conditions the semiorthogonality is equivalent to orthogonality, hence, the

family { e, ||} is Hilbert basis in (I Ep) .

!
2) The isometry f' (IEy); — Ej transform this basis into the basis {||j{((€ ))|| } in
Ef. ;
3+4) The operator v* E}, — E*, as is easily seen, is an isometry E}, and Ej C E*.

1 f'(e) f'(e:) i
Therefore ||(7*) -7 = 1 and { (v*)! e = ¢;;. The operator
7 e | 5, el e/ = %
vJv* E}, — Egq is a linear dual one, i.e. isometry Ej, onto Epsq, therefore (yJy*v,u) =
(v, u)Ey,,-
Hence

5= (e ) -

— * —lf,(ei) ¥ (A* —lfr(ej‘) _ * —1]”(81'} * _1f’(ej)

‘-.._,_.'

(&)

so {0 ’
ity {75 | =07 02 5

Since v* is an isometry E}, onto Ej and + is an isometry (I Ey), onto Esq, the families

is orthonormal family in Ej, then in Esq there will be orthonormal

- ’ -
{'yﬁ} and {(’)/"‘)‘l J|P|(e|‘|)} are total in the corresponding spaces, i.e. are basises. [J

3. Example. Nonlinear Steklov problem.
This problem was already mentioned in introduction, see (1): when we defined B, the
boundary part (1.b) of Euler—Lagrange system was not considered. However our specific

method of {e;} construction bring us new boundary equations and new function family,
which will be of interest. As the author would be about to show this effect only, we shall
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consider a simplest variant. Let  be bounded smooth domain in R?, v be the outer normal,
E=W}Q), f(v) =3 [(|Vu]* + v?)dz, z = (2*,2?), F(u) = [ v'ds— 1, Gu = {u, —u}.
Q a0

All the conditions from the section 2.4 are valid, and we need only to explain what kind
of functions {e;} are with regard to their new natural boundary conditions.
Let us write out the Euler - Lagrange equations (it is enough for e, ey, €3):

Aafi(er) + mF'(e1) =0, Agif'(er) + Ao f'(e2) + p2F'(e2) = 0,
Az1f'(e1) + Asaf'(e2) + Az af'(es) + usF'(es) = 0.

Note that, for example, the first equation is the generalized form of the equation —Ae; +

R dey efysin .
e; = 0 and boundary condition /\1.1—3 +u1e3| = 0. However it is more convenient to leave
" Ov
a0

the system in abstract form.

It folows, from the orthogonality of {e;}, that all p; # 0. Hence we can, without loss of
generality, to rewrite the system in the next form, with retaining the old notations for new
X

F!(el) = /\1,1f'(61) ) (3-1)
F’(€2) = /\Qalf’(e]_) -+ /\22}”(82) (32)
F'(e3) = A1 f'(e1) + As2f'(e2) + Aaaf'(e2) - (3-3)

After the multiplications of (3.1-3.3) on e, or e,, e3 and integral (-, -) evaluations we obtain
(Xé’.]l)

A o Fleen)
L1 7 Yf(er)en)

N, = (Flleader) _ (F'lea)ie))—(F'(e1).en)
21 = [filer)er) (f'(e1).er) ’

(aS (Fr(el)a“b) = /\1,1<ff(€1),62> = 0) s

__ (F'(es)e1)—(F'(e1),ea)
Aa1 = (f"(e1)ser) :

_ (F'(e2).e2)
Agp = (f'(e2).e2) ?

A _ (F'(ea),e2)—(F'(e2),ea)
L (F(e2).e2) ’

(as (F'(ez2), ea) = Ao (f'(e1), e3) + )\2,2(f’(62)-.83) =0).

(xes:)
. — {F'(ea),e3)
3.8 (f'(e3),es)

Let us discuss these formulas. For a completely continuous operator its (possible) nondia-
gonality is a consequence of normality absence. Therefore triangular or Jordan representations
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are the tools for nonsymmetric operators analysis. Nonlinear potential operators inherit some
properties both from linear symmetric and from linear nonsymmetric operators. Symmetry
of derivative is the first kind example. but the inequality (Au,v) # (Av,u) (whose cause is
just nonlinearity) is the second kind example.

Nonsymmetry, in turn, implies the triangular representation (3.i). Nondiagonal numbers
A;; have normalizing denominators (f'(e;), €;) and numerators (F'(e;), e;) —(F"'(e;), e;) which
registered just “nonsymmetry from nonlinearity” for operator F”.

If a function u € Ejq, have an expansion u = (a,€3+ase3 +. ..)Y/3, then (for our example)
F'(u) =" a;F'(e;). After that we can exploit (3.i), and hence we can extend the triangular
form of F’ onto that functions.

The question, what kind of functions admits that epansion, falls outside the limits of
this work subject.
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